

ORTHOGONALITY OF GENERALIZED REVERSE (σ, τ) DERIVATIONS IN SEMIPRIME Γ - RINGS

V.S.V. Krishna Murty¹,

¹Research Scholar, Department of Mathematics, S.V. University, Tirupati-517502, A.P., India. krishnamurty.vadrevu@gmail.com¹

C. Jaya Subba Reddy²

²Department of Mathematics, S. V. University, Tirupati- 517502, Andhra Pradesh, India. cjsreddysvu@gmail.com²

ABSTRACT:

Suppose that M is a semiprime Γ -ring. σ, τ are automorphisms of M. An additive mapping M is termed as a reverse (σ, τ) -derivation if it satisfies $d(u\alpha v) = d(v)\alpha\sigma(u) + \tau(v)\alpha d(u)$, for all $u, v \in M$ and $\alpha \in \Gamma$. Moreover, an additive mapping $D: M \to M$ is termed a generalized reverse (σ, τ) - derivation if there exists a reverse (σ, τ) -derivation $d: M \to M$ such that $D(u\alpha v) = D(v)\alpha\sigma(u) + \tau(v)\alpha d(u)$, for all $u, v \in M$ and $\alpha \in \Gamma$. This paper aims to extend the findings regarding orthogonal (σ, τ) derivations and orthogonal generalized (σ, τ) -derivations in semiprime Γ -rings to include the study of orthogonal reverse (σ, τ) -derivations and orthogonal generalized reverse (σ, τ) -derivations.

KEYWORDS: Semiprime Γ -ring, Reverse (σ, τ) -Derivation, Generalized Reverse (σ, τ) -Derivation, Orthogonal Reverse (σ, τ) -Derivation, Orthogonal Generalized Reverse (σ, τ) -Derivation.

1.INTRODUCTION:

Nobusawa [15] initially introduced the concept of a Γ -ring, where Γ denotes an additive abelian group. Barnes extended the results of Nobusawa on Γ -ring in his work [16]. M.Bresar and J.Vukman [11] have introduced the concept of orthogonal derivations and extended a theorem of Posner [6]. M.Soyturk [13] extended these results to Γ -rings. N.Argac et al. [14] introduced the notion of orthogonality for a pair of generalized derivations in semiprime rings and provided several necessary and sufficient conditions for the orthogonality of such pairs. Samman and Alyamani [12] studied the orthogonal conditions for reverse derivations in semi prime rings. Ashraf and Jamal [9] introduced the concept of orthogonality for two derivations in Γ -rings and established various necessary and sufficient conditions for the orthogonality of two derivations. Later they introduced orthogonal generalized derivation in Γ -rings in [10] and obtained results pertaining to orthogonal generalized derivations. K.K. Dey et al. [8] explored the conditions for the orthogonality of reverse derivations in semiprime Γ -rings. A.Shakir and M.S.Khan studied orthogonal (σ , τ)-derivations in semiprime Γ -rings. H.Yazarli and G.Oznur [7] studied orthogonal generalized (σ, τ) -derivations of semiprime Γ -rings. C. Jaya Subba Reddy and B. Ramoorthy Reddy [2,3,4,5] studied orthogonal symmetric biderivations and orthogonal generalized bi- (σ, τ) derivations in semiprime rings. In this paper, we expand the results of orthogonality of (σ, τ) derivations and generalized (σ, τ) derivations to reverse (σ, τ) derivations and generalized reverse (σ, τ) derivations in semiprime Γ – rings.

2.PRELIMINARIES:

Let M, Γ be additive abelian groups. Suppose a mapping $M \times \Gamma \times M \to M : (u, \alpha, v) \to u\alpha v$ fulfils the conditions 1. $(u\alpha v)\beta w = u\alpha(v\beta w)$ 2. $u(\alpha + \beta)v = u\alpha v + u\beta v$, 3. $(u + v)\alpha w = u\alpha w + v\alpha w$, 4. $u\alpha(v + w) = u\alpha v + u\alpha w$, for each , $v, w \in M$, $\alpha, \beta \in \Gamma$, then M is called a Γ ring.

M is referred to be semiprime if $u\alpha M\alpha u = 0$ suggests u = 0, for any $u \in M$. M is be 2-torsion free if 2u = 0 suggests u = 0 for any $u \in M$. An additive mapping $d: M \to M$ is said to be a reverse (σ, τ) - derivation of M if $d(u\alpha v) = d(v)\alpha\sigma(u) + \tau(v)\alpha d(u)$, for all $u, v \in M, \alpha \in \Gamma$. An additive mapping D: $M \to M$ is defined as a generalized reverse (σ, τ) - derivation if there exists a reverse (σ, τ) - derivation $d: M \to M$ such that $D(u\alpha v) = D(v)\alpha\sigma(u) + \tau(v)\alpha d(u)$, for all $u, v \in M, \alpha \in$ Γ . If d_1, d_2 are two reverse (σ, τ) - derivations of M such that $d_1(u)\Gamma M\Gamma d_2(v) =$ $d_2(v)\Gamma M\Gamma d_1(u) = 0$, for all $u, v \in M$ then d_1, d_2 are said to be orthogonal. If D_1, D_2 are two generalized reverse (σ, τ) - derivations of M such that $D_1(u)\Gamma M\Gamma D_2(v) = D_2(v)\Gamma M\Gamma D_1(u) = 0$, for all $u, v \in M$, then D_1, D_2 are said to be orthogonal.

Throughout the paper, M is assumed to be a semiprime Γ -ring which is 2-torsion free and σ, τ are automorphisms of M. Also we assume that $d_1\tau = \tau d_1$; $d_2\tau = \tau d_2$; $d_1\sigma = \sigma d_1$; $d_2\sigma = \sigma d_2$. We denote a generalized reverse (σ, τ) derivations D_1, D_2 associated with the reverse (σ, τ) derivations d_1, d_2 such that $D_1\tau = \tau D_1$; $D_2\tau = \tau D_2$; $D_1\sigma = \sigma D_1$; $D_2\sigma = \sigma D_2$.

LEMMA 1 [[13], Lemma 3.4.1]: Suppose M is a semiprime Γ - ring with the condition 2a=0 for all $a \in M$ implies a = 0 and $a, b \in M$. Then the conditions listed below are mutually equivalent. (i) $a\Gamma u\Gamma b = 0$, for all $u \in M$ (ii) $b\Gamma u\Gamma a = 0$, for all $u \in M$ (iii) $a\alpha u\beta b + b\alpha u\beta a = 0$, for all $u \in M$ and $\alpha, \beta \in \Gamma$.

If any of these conditions is attained, then $a\Gamma b = 0 = b\Gamma a$.

LEMMA 2 [[13], Lemma 3.4.2]: Let M be a semiprime Γ - ring and d_1 and d_2 be two additive mappings of M into itself satisfying $d_1(u)\Gamma M\Gamma d_2(u) = 0$ for all $u \in M$. Then $d_1(u)\Gamma M\Gamma d_2(v) = 0$, for all $u, v \in M$.

LEMMA 3: Suppose M is a semiprime Γ -ring which is 2-torsion free and d_1 and d_2 are reverse (σ, τ) - derivations of M. Then the following statements are biconditional.

1. d_1 and d_2 are orthogonal.

2. $d_1(u)\Gamma d_2(v) + d_2(u)\Gamma d_1(v) = 0$, for all $u, v \in M$.

Proof: we have to prove d_1 and d_2 are orthogonal $\Leftrightarrow d_1(u)\Gamma d_2(v) + d_2(u)\Gamma d_1(v) = 0$ Suppose that d_1 and d_2 are orthogonal, then $d_1(u)\Gamma M\Gamma d_2(v) = 0 = d_2(u)\Gamma M\Gamma d_1(v)$, for all $u, v \in M$ By Lemma 1, we can have $d_1(u)\Gamma d_2(v) = d_2(u)\Gamma d_1(v) = 0$ and so $d_1(u)\Gamma d_2(v) + d_2(u)\Gamma d_1(v) = 0$ Conversely, suppose that $d_1(u)\Gamma d_2(v) + d_2(u)\Gamma d_1(v) = 0$, for all $u, v \in M$ We can take $d_1(u)\beta d_2(v) + d_2(u)\gamma d_1(v) = 0$, for all $u, v \in M$ and $\beta, \gamma \in \Gamma$ (2.1)Replacing v by $u\alpha v$ in (2.1), we attain $d_1(u)\beta d_2(u\alpha v) + d_2(u)\gamma d_1(u\alpha v) = 0$ $(d_1(u)\beta d_2(v) + d_2(u)\gamma d_1(v))\alpha\sigma(u) + d_1(u)\beta \tau(v)\alpha d_2(u) + d_2(u)\gamma \tau(v)\alpha d_1(u) = 0$ Using (2.1), we attain $d_1(u)\beta \tau(v)\alpha d_2(u) + d_2(u)\gamma \tau(v)\alpha d_1(u) = 0$ (2.2)By substituting $\gamma = \gamma + \gamma'$ in equation (2.1), we arrive at $d_2(u)\gamma^1 d_1(v)\alpha\sigma(u) = 0$, for all $u, v \in M$ and $\alpha, \gamma^1 \in \Gamma$ Hence, we can write $d_2(u)\gamma^1 d_1(v)\alpha\sigma(u)\alpha d_2(u)\gamma^1 d_1(v)\alpha\sigma(u) = 0$ Given that σ is an automorphism of M and employing the semiprimeness of M , we obtain $d_2(u)\Gamma d_1(v) = 0$, for all $u \in M$ Again replacing β by $\beta + \beta'$ in equation (2.1), we arrive at $d_1(u) \beta^1 d_2(v) \alpha \sigma(u) = 0$, for all $u, v \in M$, $\alpha, \beta^1 \in \Gamma$ and hence we obtain $d_1(u) \beta^1 d_2(v) \alpha \sigma(u) \alpha d_1(u) \beta^1 d_2(v) \alpha \sigma(u) = 0$ Given that σ as an automorphism of M and using the semiprimeness of M, we attain $d_1(u)\Gamma d_2(v) = 0$, for all $u \in M$ Thus, we get $d_2(u)\Gamma d_1(v) = 0 = d_1(u)\Gamma d_2(v)$ Hence, we can conclude that d_1 and d_2 are orthogonal.

LEMMA 4 : Suppose M is a semiprime Γ -ring free of 2-torsion and (D_1, d_1) and (D_2, d_2) are two orthogonal generalized reverse (σ, τ) - derivations of M, then the following relations are satisfied. (i) $D_1(u)\Gamma D_2(v) = D_2(u)\Gamma D_1(v) = 0$, hence $D_1(u)\Gamma D_2(v) + D_2(u)\Gamma D_1(v) = 0$, for all $u, v \in M$ (ii) d_1 and D_2 are orthogonal and $d_1(u)\Gamma D_2(v) = D_2, (v)\Gamma d_1(u) = 0$, for all $u, v \in M$ (iii) d_2 and D_1 are orthogonal and $d_2(u)\Gamma D_1(v) = D_1, (v)\Gamma d_2(u) = 0$, for all $u, v \in M$ (iv) d_1 and d_2 are orthogonal (v) $d_1D_2 = D_2d_1 = 0$; $d_2D_1 = D_1d_2 = 0$; $D_1D_2 = D_2D_1 = 0$

Proof: (i) : Since (D_1, d_1) and (D_2, d_2) are orthogonal By the definition of orthogonality of D_1, D_2 , we can have $D_1(u)\Gamma M\Gamma D_2(v) = 0 = D_2(v)\Gamma M\Gamma D_1(u)$, for all $u, v \in M$ By Lemma 1, we get $D_1(u)\Gamma D_2(v) = 0 = D_2(v)\Gamma D_1(u)$ and so $D_1(u)\Gamma D_2(v) + D_2(v)\Gamma D_1(u) = 0$, for all $u, v \in M$ (ii): Since (D_1, d_1) and (D_2, d_2) are orthogonal, We can have $D_1(u)\Gamma M\Gamma D_2(v) = 0$ and so $D_1(u)\Gamma D_2(v) = 0$ Consider, $D_1(u)\alpha D_2(v) = 0$, for all $u, v \in M$ and $\alpha \in \Gamma$ (2.3)Replacing *u* by $u\beta r$ in (2.3), for all $u, r \in M$, $\beta \in \Gamma$ $D_1(u\beta r)\alpha D_2(v) = 0$ $D_1(r)\beta\sigma(u) \alpha D_2(v) + \tau(r)\beta d_1(u) \alpha D_2(v) = 0$ Using the equation (2.3), we obtain $\tau(r)\beta d_1(u) \alpha D_2(v) = 0$ and hence we can write (2.4) $d_1(u)\alpha D_2(v)\beta\tau(r)\beta d_1(u)\alpha D_2(v) = 0$ Since τ is an automorphism of a semiprime Γ -ring M, we get $d_1(u) \alpha D_2(v) = 0$, for all $u, v \in M$, $\alpha \in \Gamma$ (2.5)Hence, d_1 and D_2 are orthogonal. Replacing u by $r\beta u$, for $u, r \in M$ and $\beta \in \Gamma$ in (2.5), we obtain $d_1(r\beta u)\alpha D_2(v) = 0$, for $u, v, r \in M$, $\alpha, \beta \in \Gamma$ $d_1(u)\beta\sigma(r)\alpha D_2(v) + \tau(u)\beta d_1(r) \alpha D_2(v) = 0$ Using the equation (2.5) in the above equation, we get $d_1(u)\beta\sigma(r)\alpha D_2(v) = 0$, for $u, v, r \in M$, $\alpha, \beta \in \Gamma$ Since σ is an automorphism, we get $d_1(u)\beta r\alpha D_2(v) = 0$ $d_1(u)\Gamma M\Gamma D_2(v) = 0$, for all $u, v \in M$ By Lemma 1, we obtain $d_1(u)\Gamma D_2(v) = 0 = D_2(v)\Gamma d_1(u)$, for all $u, v \in M$ (iii): By employing the similar procedure we adopted in the previous discussion, we can get d_2 and D_1 are orthogonal and $d_2(u)\Gamma D_1(v) = 0 = D_1(v)\Gamma d_2(u)$, for all $u, v \in M$ (iv): We have D_1 and D_2 are orthogonal. Hence, we can write $D_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$ (2.6)Replacing u by $w\beta u$ and v by $x\gamma v$, for $u, v, w, x \in M$, $\alpha, \beta, \gamma \in \Gamma$ in the equation (2.6), we get $D_1(w\beta u)\alpha D_2(x\gamma v) = 0$, for all $u, v, w, x \in M$ and $\alpha, \beta, \gamma \in \Gamma$ $D_1(u)\beta\sigma(w) \alpha D_2(v)\gamma\sigma(x) + \tau(u)\beta d_1(w) \alpha D_2(v)\gamma\sigma(x) + D_1(u)\beta\sigma(w) \alpha\tau(v)\gamma d_2(x) +$ $\tau(u)\beta d_1(w)\alpha \tau(v)\gamma d_2(x) = 0$ Using conditions (i), (ii), (iii) of Lemma 4, we get $\tau(u)\beta d_1(w)\alpha \tau(v)\gamma d_2(x) = 0$, for all $u, v, w, x \in M$ and $\alpha, \beta, \gamma \in \Gamma$ and hence $d_1(w)\alpha \tau(v)\gamma d_2(x)\beta \tau(u)\beta d_1(w)\alpha \tau(v)\gamma d_2(x) = 0$ Using the Semiprimeness of M and fact that τ is an automorphism, we obtain $d_1(w)\alpha\tau(v)\gamma d_2(x) = 0$. This means $d_1(w)\Gamma M\Gamma d_2(x) = 0$ Hence, the proof is complete. (v): We have (D_1, d_1) and (D_2, d_2) are orthogonal. By (ii), we can write that d_1 and D_2 are orthogonal. Hence, $d_1(u)\alpha w\beta D_2(v) = 0 = D_2(v)\alpha w\beta d_1(u)$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ Therefore, $D_2(D_2(v)\alpha w\beta d_1(u)) = 0$, for all $u, v, w \in M$ and $\alpha \beta \in \Gamma$ $D_2(w\beta d_1(u))\alpha\sigma(D_2(v)) + \tau(w\beta d_1(u))\alpha d_2(D_2(v)) = 0$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ $D_{2}(d_{1}(u))\beta\sigma(w)\alpha\sigma(D_{2}(v) + \tau(d_{1}(u))\beta d_{2}(w)\alpha\sigma(D_{2}(v) + \tau(w\beta d_{1}(u))\alpha d_{2}(D_{2}(v)) = 0$ Since σ, τ are automorphisms and using $d_1\tau = \tau d_1$; $D_2\sigma = \sigma D_2$ we get

 $D_{2}(d_{1}(u))\beta w \alpha D_{2}(v) + d_{1}(u)\beta d_{2}(w)\alpha D_{2}(v) + w\beta d_{1}(u)\alpha d_{2}(D_{2}(v)) = 0$ Since d_{1} , d_{2} are orthogonal, we obtain $D_{2}(d_{1}(u))\beta w \alpha D_{2}(v) = 0$ (2.7) Replacing v by $d_{1}(u)$ in (2.7), we obtain $D_{2}(d_{1}(u))\beta w \alpha D_{2}(d_{1}(u)) = 0$ $D_{2}d_{1}(u)\beta w \alpha D_{2}d_{1}(u) = 0$ By the semiprimeness of Γ -ring M, we can conclude that $D_{2}d_{1} = 0$ By following the similar procedure as we adopted in the earlier discussion, the results $d_{1}D_{2} = 0$; $d_{2}D_{1} = D_{1}d_{2} = 0$; $D_{1}D_{2} = D_{2}D_{1} = 0$ are evident. Thus, we have $d_{1}D_{2} = 0 = D_{2}d_{1}$; $D_{1}d_{2} = 0 = d_{2}D_{1}$; $D_{1}D_{2} = D_{2}D_{1} = 0$ This completes the proof.

3.RESULTS:

THEOREM 1: Suppose M is a semiprime Γ -ring which is 2-torsion free and d_1 and d_2 are reverse (σ, τ) -derivations on M. Then the subsequent circumstances are equivalent:

1. d_1 and d_2 are orthogonal	2. $d_1 d_2 = 0$
3. $d_2 d_1 = 0$	4. $d_1d_2 + d_2d_1 = 0$
5. $d_1 d_2$ is a derivation.	6. $d_2 d_1$ is a derivation

Proof: Given that d_1 and d_2 are reverse (σ, τ) -derivations on M.

 $(1) \Leftrightarrow (2)$ d_1 and d_2 are orthogonal $\Leftrightarrow d_1 d_2 = 0$ Suppose that d_1 and d_2 are orthogonal. Then we have $d_1(\mathbf{u})\alpha \nu \beta d_2(w) = 0 = d_2(\mathbf{w})\alpha \nu \beta d_1(u)$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ (3.1)Hence, we can write $d_1(d_2(w)\alpha v\beta d_1(u))=0$ $d_{1}^{2}(u) \beta \sigma(d_{2}(w)\alpha v) + \tau(d_{1}(u))\beta d_{1}(v)\alpha \sigma(d_{2}(w) + \tau(d_{1}(u))\beta \tau(v)\alpha d_{1}(d_{2}(w)) = 0$ Since σ , τ are automorphisms and using the equation (3.1), we get $d_1(u)\beta v\alpha d_1(d_2(w)) = 0$ (3.2)Replacing u by $d_2(w)$ in equation (3.2), we get $d_1(d_2(w)\beta v\alpha d_1(d_2(w)) = 0$ $d_1d_2(\mathbf{w})\beta \ v\alpha d_1d_2(\mathbf{w}) = 0$, for all $v, w \in M$ and $\alpha \beta \in \Gamma$ By the semiprimeness of M, we can conclude that $d_1d_2 = 0$ Conversely, Suppose that $d_1d_2 = 0$ Then $d_1 d_2(v \alpha u) = d_1(d_2(v \alpha u))$ Since σ, τ are automorphisms of M, we get $d_1d_2(v\alpha u) = d_1(v)\alpha d_2(u) + v\alpha d_1d_2(u) + d_1d_2(v)\alpha u + d_2(v)\alpha d_1(u)$ Using the hypothesis that $d_1d_2 = 0$, we get $d_1d_2(v\alpha u) = d_1(v)\alpha d_2(u) + d_2(v)\alpha d_1(u)$ $d_1(v)\alpha d_2(u) + d_2(v)\alpha d_1(u) = 0$ and hence d_1 , d_2 are orthogonal. $(1) \Leftrightarrow (3)$ By a similar argument, we can prove that d_1 and d_2 are orthogonal $\Leftrightarrow d_2 d_1 = 0$

(3.3)

25

 $(1) \Leftrightarrow (4)$

 d_1 and d_2 are orthogonal $\Leftrightarrow d_1d_2 + d_2d_1 = 0$

Suppose that d_1 and d_2 are orthogonal

By conditions (2),(3) of Theorem 1, we have already proved that $d_1d_2 = 0$ and $d_2d_1 = 0$ and hence $d_1d_2 + d_2d_1 = 0$

Conversely,

Suppose that $d_1d_2 + d_2d_1 = 0$, then we have to prove that d_1 and d_2 are orthogonal. $(d_1d_2 + d_2d_1)(u\alpha v) = 0$

 $\begin{aligned} &d_1(\sigma(u))\alpha\sigma(d_2(v)) + \tau(\sigma(u))\alpha d_1d_2(v) + d_1d_2(u)\alpha\sigma(\tau(v)) + \tau(d_2(u)\alpha d_1(\tau(v)) + \\ &d_2(\sigma(u))\alpha\sigma(d_1(v)) + \tau(\sigma(u))\alpha d_2d_1(v) + d_2d_1(u)\alpha\sigma(\tau(v)) + \tau(d_1(u))\alpha d_2(\tau(v)) = 0 \\ &d_1(\sigma(u))\alpha\sigma(d_2(v) + \tau(\sigma(u))\alpha(d_1d_2 + d_2d_1)(v) + (d_1d_2 + d_2d_1)(u)\alpha\sigma(\tau(v)) + \\ &\tau(d_2(u)\alpha d_1(\tau(v)) + d_2(\sigma(u))\alpha\sigma(d_1(v)) + \tau(d_1(u))\alpha d_2(\tau(v)) = 0 \end{aligned}$

Since
$$d_1d_2 + d_2d_1 = 0$$
, we get

$$d_1(\sigma(u))\alpha\sigma(d_2(v)) + \tau(d_2(u))\alpha d_1(\tau(v)) + d_2(\sigma(u))\alpha\sigma(d_1(v)) + \tau(d_1(u))\alpha d_2(\tau(v)) = 0$$

Since σ, τ are automorphisms of semiprime rings of M and using $d_1\sigma = \sigma d_1$; $d_2\sigma = \sigma d_2$; $d_1\tau = \tau d_1$

; $d_2 \tau = \tau d_2$, we obtain

$$d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v) + d_2(u)\alpha d_1(v) + d_1(u)\alpha d_2(v) = 0$$

2(d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v)) = 0

$$d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v) = 0$$

Given that M is 2 torsion free, it follows that d_1, d_2 are orthogonal. (By Lemma 3) (1) \Leftrightarrow (5)

 d_1, d_2 are orthogonal $\Leftrightarrow d_1 d_2$ is a derivation.

Suppose that d_1, d_2 are two orthogonal reverse (σ, τ) derivations

Then, $d_1(u)\alpha v\beta d_2(v) = 0 = d_2(v)\alpha v\beta d_1(u)$

 $d_1d_2(u\alpha v) = d_1(d_2(u\alpha v)) = d_1(d_2(v)\alpha\sigma(u) + \tau(v)\alpha d_2(u))$

$$= d_1(d_2(v)\alpha\sigma(u) + d_1(\tau(v)\alpha d_2(u)))$$

 $=d_1(\sigma(u))\alpha\sigma(d_2(v)) + \tau(\sigma(u))\alpha d_1(d_2(v)) + d_1(d_2(u))\alpha\sigma(\tau(v) + \tau(d_2(u))\alpha d_1(\tau(v)))$ Since σ, τ are automorphisms of semiprime Γ -ring M and using $d_1\sigma = d_1\sigma$; $d_2\sigma = \sigma d_2$; $d_1\sigma = \sigma d_1 + d_2\sigma = \sigma d_2$; $d_2\sigma = \sigma d_2$;

$$a_1 \tau = \tau a_1$$
; $a_2 \tau = \tau a_2$; we obtain
 $d_1 d_2 (u \alpha v) = d_1(u) \alpha d_2(v) + u \alpha d_1 d_2(v) + d_1 d_2(u) \alpha v + d_2(u) \alpha d_1(v)$

 $= d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v) + d_1d_2(u)\alpha v + u\alpha d_1d_2(v)$

 $= d_1 d_2(u) \alpha v + u \alpha d_1 d_2(v)$ (By orthogonality definition of $d_1 d_2$).

Therefore, $d_1d_2(u\alpha v) = d_1d_2(u)\alpha v + u\alpha d_1d_2(v)$. Hence, d_1d_2 is a derivation. Conversely, suppose that d_1d_2 is a derivation

Then
$$d_1d_2(u\alpha v) = d_1d_2(u)\alpha v + u\alpha d_1d_2(v)$$
 (3.4)
Since d_1, d_2 are two reverse (σ, τ) -derivations, we can have
 $d_1d_2(u\alpha v) = d_1(d_2(u\alpha v))$
 $= d_1(u)\alpha d_2(v) + u\alpha d_1d_2(v)) + d_1d_2(u)\alpha v + d_2(u)\alpha d_1(v)$
Comparing the above equation with (3.3), we obtain
 $d_1d_2(u)\alpha v + u\alpha d_1d_2(v) = d_1(u)\alpha d_2(v) + u\alpha d_1d_2(v) + d_1d_2(u)\alpha v + d_2(u)\alpha d_1(v)$
Hence, we get $d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v) = 0$

Hence, $d_{1,}d_{2}$ are orthogonal.

 $(1) \Leftrightarrow (6)$

 d_1, d_2 are orthogonal $\Leftrightarrow d_2 d_1$ is a derivation.

Using the same procedure we adopted in the above proof, we can easily prove the result.

THEOREM 2:

Consider M as a semiprime Γ -ring which is 2 torsion free. There are two generalized reverse (σ , τ) derivations (D_1 , d_1) and (D_2 , d_2) of M that are orthogonal if and only if the following requirements are met.

(i) a) D₁(u)ΓD₂(v) + D₂(u)ΓD₁(v) = 0, for all u, v ∈ M
b) d₁(u)ΓD₂(v) + d₂(u)ΓD₁(v) = 0, for all u, v ∈ M
(ii) D₁(u)ΓD₂(v) = d₁(u)ΓD₂(v) = 0, for all u, v ∈ M

(iii) $D_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$ and $d_1D_2 = d_1d_2$

Proof: (i): (D_1, d_1) and (D_2, d_2) are orthogonal \Leftrightarrow (i) Suppose that (D_1, d_1) and (D_2, d_2) of M are orthogonal By Using the conditions (i), (ii) and (iii) of Lemma 4, it is already proved that the two conditions a) $D_1(u)\Gamma D_2(v) + D_2(u)\Gamma D_1(v) = 0$, for all $u, v \in M$ b) $d_1(u)\Gamma D_2(v) + d_2(u)\Gamma D_1(v) = 0$, for all $u, v \in M$ are satisfied. Conversely Suppose that the conditions a) $D_1(u)\Gamma D_2(v) + D_2(u)\Gamma D_1(v) = 0$, for all $u, v \in M$ (3.5)b) $d_1(u)\Gamma D_2(v) + d_2(u)\Gamma D_1(v) = 0$, for all $u, v \in M$ holds (3.6)Replacing u by $w\alpha u$ in (3.5), we get $D_1(w\alpha u)\beta D_2(v) + D_2(w\alpha u)\beta D_1(v) = 0$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ $D_{1}(u)\alpha\sigma(w)\beta D_{2}(v) + \tau(u)\alpha(d_{1}(w)\beta D_{2}(v) + d_{2}(w)\beta D_{1}(v)) + D_{2}(u)\alpha\sigma(w)\beta D_{1}(v) = 0$ Using the equation (3.6), we get $D_1(u)\alpha\sigma(w)\beta D_2(v) + D_2(u)\alpha\sigma(w)\beta D_1(v) = 0$ Since σ is an automorphism, we obtain $D_1(u)\Gamma M\Gamma D_2(v) + D_2(u)\Gamma M\Gamma D_1(v) = 0$, for all $u, v \in M$ By Lemma 1, we can write $D_1(u)\Gamma D_2(v) = 0 = D_2(v)\Gamma D_1(u)$ Hence, we can conclude that D_1 and D_2 are orthogonal. (ii): (D_1, d_1) and (D_2, d_2) are orthogonal $\Leftrightarrow D_1(u) \Gamma D_2(v) = d_1(u) \Gamma D_2(v) = 0$, for all $u, v \in M$. Suppose that (D_1, d_1) and (D_2, d_2) are orthogonal. Hence by the conditions (i) and (ii) of Lemma 4, we can have $D_1(u)\Gamma D_2(v) = 0$ and $d_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$. (3.7) Conversely, Suppose that $D_1(u)\Gamma D_2(v) = 0$ and $d_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$. Consider $D_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$ (3.8)

26

If we change u to $w\alpha u$ in (3.8), we obtain $D_1(w\alpha u)\Gamma D_2(v) = 0$, for all $u, v, w \in M$ and $\alpha \in \Gamma$ $D_1(u)\alpha\sigma(w)\beta D_2(v) + \tau(u)\alpha d_1(w)\beta D_2(v) = 0$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ Since σ is an automorphism and employing equation (3.7), we get $D_1(u)\alpha w\beta D_2(v) = 0$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ Therefore, D_1 , D_2 are orthogonal (By the definition of the orthogonality) **(iii):** $(D_1, d_1), (D_2, d_2)$ are orthogonal $\Leftrightarrow D_1(u) \Gamma D_2(v) = 0$ for all $u, v \in M, d_1 D_2 = d_1 d_2 = 0$ Suppose that (D_1, d_1) and (D_2, d_2) are orthogonal. Then by the condition (i) and (v) of Lemma 4, we can conclude that $D_1(u)\Gamma D_2(v) = 0$ and $d_1D_2 = 0$. By the condition (iv) of Lemma 4, we conclude that d_1, d_2 are orthogonal Hence, by Theorem 1, we can say that $d_1d_2 = 0$ Thus, we have proved $D_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$, $d_1D_2 = d_1d_2 = 0$ Conversely, Suppose that $D_1(u)\Gamma D_2(v) = 0$, for all $u, v \in M$, $d_1D_2 = d_1d_2 = 0$ (3.9)Consider $d_1 D_2 = 0$ Then $d_1 D_2(u\alpha v) = d_1(D_2((u\alpha v))) = d_1(D_2(v)\alpha\sigma(u) + \tau(v)\alpha d_2(u)) = 0$ $=d_{1}(\sigma(u))\alpha\sigma(D_{2}(v)) + \tau(\sigma(u)\alpha d_{1}(D_{2}(v)) + d_{1}(d_{2}(u))\alpha\sigma(\tau(v)) + \tau(d_{2}(u)\alpha d_{1}(\tau(v)) = 0)$ Since σ , τ are automorphisms of semiprime rings of M and using $d_1\sigma = d_1\sigma$; $d_1\tau = \tau d_1$; $D_2\sigma =$ σD_2 , we obtain $d_{1}(u)\alpha D_{2}(v) + u\alpha d_{1}D_{2}(v) + d_{1}d_{2}(u)\alpha v + d_{2}(u)\alpha d_{1}(v) = 0$ (3.10)Using the equation (3.9), we get $d_1(u)\alpha D_2(v) + d_2(u)\alpha d_1(v) = 0$ (3.11)By Theorem 1, if $d_1d_2 = 0$, then d_1, d_2 are orthogonal and so equation (3.11) becomes $d_1(\mathbf{u})\alpha D_2(\mathbf{v})=0$, for all $u, v \in M$ and $\alpha \in \Gamma$ (3.12)If we replace $u = w\beta u$ in (3.12) and using (3.12) $d_1(w\beta u)\alpha D_2(v)=0$, for all $u, v, w \in M$ and $\alpha, \beta \in \Gamma$ $d_1(\mathbf{u})\beta\sigma(\mathbf{w})\alpha D_2(\mathbf{v}) + \tau(\mathbf{u})\beta d_1(\mathbf{w})\alpha D_2(\mathbf{v}) = 0$

 $d_1(\mathbf{u})\beta\sigma(\mathbf{w})\alpha D_2(\mathbf{v}) = 0$

Since σ is an automorphism and using Lemma 1, we can conclude that

$$d_1(\mathbf{u})\Gamma M\Gamma D_2(\mathbf{v}) = 0$$
 and so $d_1(\mathbf{u})\Gamma D_2(\mathbf{v}) = 0$
(3.13)

From (3.9) and (3.13) and using the condition (ii) of Theorem 2 we can conclude that

 (D_1, d_1) and (D_2, d_2) are orthogonal.

REFERENCES:

[1] A.Shakir and M. S. Khan, "On orthogonal (σ , τ)-derivations in semiprime Γ -rings", *International*

electronic journal of algebra, 13(13) (2013), 23–39.

[2] C. Jaya Subba Reddy and B. Ramoorthy Reddy, "Orthogonal Symmetric Bi- (σ, τ) -Derivations in

Semiprime Rings", International Journal of Algebra, 10(9) (2016), 423–428.

- [3] C. Jaya Subba Reddy and B. Ramoorthy Reddy, "Orthogonal Generalized Symmetric Biderivations of Semiprime Rings", *Contemporary Mathematics*, 4(1) (2017), 21–27.
- [4] C. Jaya Subba Reddy, B. Ramoorthy Reddy, "Orthogonal Symmetric Biderivations in semi prime rings", *International Journal of Mathematics and Statistics Studies*, 4(1) (2016), 22-29.
- [5] C. Jaya Subba Reddy and B. Ramoorthy Reddy, "Orthogonality of Generalized (σ, τ) symmetric biderivations in semiprime rings", *International Journal of Educational Science and Research*, 8(6) (2018), 45-52.
- [6] E.C.Posner, "Derivations in prime rings", Proc. Amer. Soc. 8 (1957), 1093-1100.
- [7] H.Yazarliand G. Oznur, "Orthogonal generalized (σ , τ)-derivations of semiprime gamma rings", *East Asian mathematical journal*, 23(2) (2007), 197–206.
- [8] K. K. Dey, A. C. Paul, and I. S. Rakhimov, "Semiprime gamma rings with orthogonal reverse derivations", *International Journal Of Pure and Applied Mathematics*, 83(2) (2013), 233–245.
- [9] M.Ashraf and M.R.Jamal, "Orthogonal derivations in Γ -ring", Advances in Algebra. 3(1)

(2010),

- 1-6.
- [10] M. Ashraf and M. R. Jamal, "Orthogonal Generalized derivations in Γ-rings", Aligarh Bull. Math, 29(1) (2010), 41–46.

[11] M. Bresar and J.Vukman,"Orthogonal derivation and extension of a theorem of Posner", *Radovi*

Matematicki, 5 (1989), 237-246.

- [12] M. Samman, N. Alyamani, "Derivations and reverse derivations in semiprime Rings", *International Mathematical Forum*, 2(39) (2007), 1895-1902.
- [13] M. Soyturk, "Some Generalizations in prime ring with derivation", Ph. D. Thesis, Cumhuriyet Univ. Graduate School of Natural and Applied Sci. Dep.of Math. 1994.
- [14] N. Argac, N.Atsushi and E. Albas, "On orthogonal generalized derivations of semiprime rings", *Turk J. Math.*, 28 (2004),185-194.
- [15] N. Nobusawa, "On a generalization of the ring theory", Osaka J. Math., 1(1964), 81-89.
- [16] W.E.Barnes, "On the Γ –rings of Nobusawa", Pacific J.Math., 18(3) (1966),411-422.